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Abstract: Fiber-based techniques make it possible to implant a miniaturized and flexible 
surface plasmon resonance (SPR) sensor into the human body. However, for implantable 
applications, the miniaturization of fiber SPR sensors results in low sensitivity compared with 
traditional prism-type SPR sensors due to limited space and the effects of temperature 
fluctuations. Therefore, it is necessary to compensate for temperature drift in the 
measurements, such as the case of the quantification of the relationship between glucose 
concentration and SPR resonance wavelength. In this report, we proposed a highly sensitive 
fiber SPR sensor based on a side-polished structure modified by graphene for implantable 
continuous glucose monitoring with in situ temperature self-compensation using a long-
period fiber grating (LPFG). The results demonstrate that the sensor with monolayer graphene 
achieved the best sensitivity of 3058.22 nm/RIU, and the LPFG achieves a maximum 
resolution of 0.042 nm/°C. The proposed SPR sensor enabled the detection of hypoglycemia, 
which is still a significant challenge for continuous glucose monitoring in a clinical setting. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 
Diabetes mellitus is a common chronic disease that requires continuous monitoring of blood 
glucose level to provide guidance for diagnosis and therapy [1,2]. Nowadays, implantable 
enzyme electrode sensors are widely used for continuous glucose monitoring in a clinical 
setting, but this approach has inherent disadvantages which include significant current signal 
drift due to the bioelectricity of the body. The method may also fail to detect hypoglycemia as 
a result of the irreversible consumption of glucose during the process of enzyme catalytic 
reaction [3]. The implantable fiber SPR sensor is able to overcome these drawbacks due to the 
following characteristics [4]. First, the fiber SPR sensor is the only part that is implanted in 
the subcutaneous tissue, and only the optical signal passes through the tissue. Therefore, the 
glucose measurement is not affected by the bioelectricity of the body. Thus, the resulting 
reduced signal drift would facilitate more accurate glucose measurement results [5]. Second, 
glucose determination based on refractive index variation guarantees that no glucose is 
depleted during the measurement process which is critical in the detection of hypoglycemia, 
which is still a significant challenge with regard to continuous glucose monitoring using an 
enzyme electrode sensor [6]. Third, the implantable fiber SPR sensor could allow for a 
flexible connection to the subcutaneous tissue, thereby facilitating the acquisition of a more 
stable and accurate signal [7]. 

However, the miniaturization of fiber SPR sensor results in a low sensitivity compared 
with traditional prism-type SPR sensors. To address this problem, current research activity is 
mainly focused on effective methods to fabricate nanostructures such as noble metal 
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nanoparticles or two-dimensional materials on the surface of fiber SPR sensors, to stimulate 
localized surface plasmon resonance for enhancement of the sensitivity of the SPR sensor [8–
10]. It is still a significant challenge to construct nanostructures on the micron-scale on the 
cylindrical surface of a fiber SPR sensor [11]. Therefore, the side-polished structure which is 
close to a prism structure, is preferred instead of a cylindrical fiber with respect to sensors 
sensitivity and modification difficulty. 

In recent years, graphene has attracted great attention because of its distinctive electrical 
and optical properties [12,13]. It can significantly increase the mobility of electrons on the 
gold film of the SPR sensor, since the charge carrier mobility of graphene is reported to be as 
high as 106 cm2 V−1 s−1 and it is known as the best conductor to date [12,14]. In addition, it 
can serve as biomolecular recognition elements to enhance the adsorption of biomolecules on 
the gold film of SPR sensors because of its large surface area and pi-stacking force [15–17], 
which could overcome the sensitivity limit of the SPR biosensor due to the poor adsorption of 
gold to biomolecules. In addition, chemical vapor deposition (CVD) graphene has more 
advantages compared to graphene prepared by oxidation-reduction methods including a better 
structure. Moreover, the size of graphene is not limited by ingredients, which has further 
promoted the adoption of graphene-based biosensors. Thus, the utilization of graphene which 
can enhance the electron mobility of gold and adsorption of glucose molecules to achieve 
high sensitivity of refractive index-based detection [18], will improve the accuracy of glucose 
measurement in trace glucose solution. Zhang presented a U-bent fiber optic SPR sensor 
based on graphene/AgNPs, which combined the advantages of graphene, AgNPs, and a U-
bent fiber to achieve a sensitivity of 1198 nm/RIU [19]. Yang proposed a photonic crystal 
fiber (PCF)-based SPR sensor with a wavelength sensitivity of 2520 nm/RIU [20]. Based on 
the remarkable properties of graphene, we designed a high sensitivity fiber SPR sensor with a 
side-polished structure for easy modification of CVD graphene, which can promote the 
electron mobility of gold and the adsorption of a glucose molecule to achieve high sensitivity 
of refractive index-based detection [18]. 

The resonance wavelength of SPR is also susceptible to the analyte temperature. As Yang 
et al. reported, the resonance wavelength of traditional SPR temperature sensors exhibits a 
blue shift as the temperature increases [21]. Therefore, fluctuations of the body temperature 
could affect the measurement accuracy of glucose concentration after the sensor is implanted 
into the subcutaneous tissue [22]. For traditional prism-based SPR sensors, a temperature 
control device such as a thermal box or platinum electrode is typically used to measure and 
maintain a stable temperature during experiments [23]. However, it is impossible to implant a 
temperature control device into the body because of volume and biocompatibility constraints. 
Therefore, there is great significance in in situ measurements accompanied by temperature 
compensation. Since the first long-period grating (LPFG) was successfully inscribed on an 
optical fiber in 1996 [24], it has been widely used for temperature measurement. LPFG 
temperature sensors can be used in environments with high electromagnetic interference such 
as in the presence of bioelectricity, and in instances where space is strictly limited because of 
constraints such as small size, lightweight, and flexible; as well as high radiation tolerance. 
For the current SPR sensor, we cannot determine whether the change of the resonance 
wavelength is caused by temperature or is solely due to concentration changes, in the case of 
the SPR sensor. Therefore, we engraved the LPFG onto the fiber core to incorporate a 
temperature sensor inside the SPR sensor such that in situ temperature and concentration can 
be obtained simultaneously to compensate for the temperature drift of the SPR spectrogram. 

2. Fabrication of the SPR sensor with temperature self-compensation 
The proposed fiber SPR sensor that is engraved onto the fiber core with a LPFG modified 
with graphene for continuous glucose monitoring is shown in Fig. 1(A). A cellulose acetate 
semi-permeable membrane with a selectable molecular weight cut-off was used as a 
protective cover to separate the implanted sensor from the tissue and further filter out large 
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turns, the cladding on the side of the fiber is eroded. Meanwhile, the specific grinding 
thickness is calibrated using a microscope and the relationship between the calibrated 
thickness and the insertion loss of the optical fiber is established. In the process of polishing, 
the insertion loss of the optical fiber will is detected in real time. When the predetermined 
insertion loss is achieved, the process is immediately terminated. A series of mechanical 
operations, such as the start and stop of the rotation of the grinding wheel are controlled by a 
computer. Thus enhances the precision and accuracy of the processing process. After 
polishing the fiber, the polishing area should be further polished to make the surface smooth 
to ensure the thickness of the metal layer is uniform in the next step which can enhance the 
phenomenon of SPR. One side of the fiber presents a relatively flat slope in the transition 
region, rather than a strict plane. The length of the side-polished area is 5 mm and the residual 
thickness of the cladding in the area is 0 μm, which means that part of the core is exposed to 
the air. 

2.3 Physical vapor deposition of chromium/gold 

The SPR phenomenon requires a metal film to generate surface plasma waves. In this report, 
chromium (as a transition layer to increase the fastness of the gold film and quartz) and gold 
were used to stimulate the SPR effect. The preparation materials for vacuum coating are: 
chromium wire, gold wire with a purity of 99.999%, a molybdenum boat, as well as a fixture 
for coating. Moreover, this investigation used the LN-284SA vacuum coating machine 
produced by Shenyang Lining company to meet the requirements for the thicknesses of the 
chromium layer and the gold film of 4 nm and 35 nm, respectively. 

2.4 Graphene modification by liquid transfer method 

It is very difficult to grow graphene directly on the micro-scale sensing area of fiber SPR 
sensor after polishing. So a liquid transfer method was proposed to grow CVD graphene onto 
the Au film. 

Single-Layer graphene (ACS MATERIAL, USA) was transferred onto the side-polished 
surface in deionized water according to the steps outlined in Fig. 2(A). Firstly, the graphene 
on polymer was released into the deionized water which leads to the separation of the 
polymer and single-layered graphene. Secondly, the graphene was salvaged by depositing it 
on filter paper. Then the paper with the deposited single-layer graphene was cut into pieces 
with the desired shape and size. Subsequently, the desired pieces were returned to the 
deionized water and subsequently captured with the cleaned fiber SPR sensor to allow the 
graphene to cover the side-polished surface exactly. Finally, the PMMA (polymethyl 
methacrylate) layer was cleared by acetone [27]. 

The details of process (f) in Fig. 2(A) is shown in Fig. 2(B). The graphene film floats on 
the surface of the water just above the fiber before the transfer process, as shown in Fig. 2(B). 
Then, the graphene descends with the decline of the surface of the water and gradually 
adheres to the side-polished surface until the water is completely removed using a Pasteur 
pipette due to Van der Waals forces. Finally, the PMMA layer is removed with acetone and a 
new CVD single-layer graphene can be transferred to the previous graphene layer through the 
same method. Once the graphene has been wrapped around the fiber, it does not separate 
from its surface even after immersion in water because of the high bond energy of graphene. 
This method could be used in the transfer of multi-layer graphene as well. Figure 2(C) shows 
the characterization of graphene on the surface of the SPR sensor using Laser Micro-Raman 
Spectrometry with a 532 nm light source. Figure 3 shows the SEM images of the proposed 
sensor with different layers of graphene. From Fig. 3(B) to Fig. 3(D), we can see the 
boundary of transferred CVD graphene, and the color gradually deepened as the layers 
increased. The results prove that the proposed transfer method is reliable and effective. 
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graphene achieved the best sensitivity of 3058.22 nm/RIU during the experiments. This value 
represents an enhancement of 2.29 times compared with the sensitivity of 1333.63 nm/RIU 
for the control group without graphene. To ensure the reliability of experimental data, the 
measurement uncertainty of SPR sensor modified with monolayer graphene at different 
glucose concentration as shown in Table 2. 

Table 1. The Sensitivity comparison with the proposed sensor and previously reported 
fiber SPR sensors 

 
Sensitivity (nm/RIU) R-Square 

w/o graphene 1333.63 0.9886 
1-layer graphene 3058.22 0.9994 

2-layers graphene 2358.28 0.9888 
3-layers graphene 1572.86 0.9826 
U-bent fiber optic SPR 
sensor with graphene/AgNPs 
[19] 

1198  

PCF-based SPR sensor [20] 2520  

Table 2. The measurement uncertainty of SPR sensor modified with monolayer graphene 

Concentration of 
glucose (mg/dL) 

Average (nm) Standard deviation ( xσ ) Uncertainty (%) 

0 644.9867 0.195253 8.732263 
10 644.7336 0.053005 2.370515 

20 648.2094 0.216827 9.697103 
40 648.5055 0.06615 2.958401 
60 648.8958 0.064969 2.905589 
80 651.1505 0.026071 1.165967 
100 652.4212 0.030582 1.367727 
150 655.8866 0.04319 1.931578 
200 657.4944 0.172456 7.712713 
250 657.3093 0.074062 3.31227 
300 661.6141 0.031968 1.429709 

3.5 The temperature compensation of SPR resonance wavelength 

Figure 4(C) shows the relationship between LPFG resonance wavelength and glucose 
concentration at 36°C. When the glucose concentration increased from 60 to 160mg/dL (to 
cover the normal blood sugar range), the resonance wavelength shifted from 1546.68 nm to 
1546.66 nm. Compared to the change of resonance wavelength caused by temperature, 
glucose concentration has smaller effect on resonance wavelength. Therefore, the LPFG was 
relatively insensitive to the ambient RI changes in our experiments but was sensitive to 
changes in the ambient temperature. The SPR exhibited sensitivity to both changes. The 
temperature spectrum and SPR spectrum are separated so that a spectrogram which covers 
both spectra can be obtained simultaneously as shown in Fig. 6(B) and Fig. 6(C). Thus, the 
temperature of the solution can be obtained by LPFG and the drift of the resonance 
wavelength caused by temperature can be compensated. 

In the temperature compensation experiment, 36°C was set as the standard temperature. 
At first, the resonance wavelength of the LPFG was measured and the experimental 
temperature could be obtained as shown in Fig. 4(B). Then the resonance wavelength of the 
SPR (λ1) at 36°C could be obtained by inserting 36°C into the fitting formula of Fig. 5(B). 
Finally, the pure resonance wavelength shift of the SPR caused only by the glucose 
concentration could be calculated by subtracting λ1 from λi [28] (As the glucose concentration 
is increased in each subsequent measurement, the temperature of the system is also 
correspondingly raised by 0.5 degrees C) as shown in Fig. 6(D). Prior to temperature 
compensation, the blue-shift of the resonance wavelength increases as temperature rises, 
which results in the inaccuracy of the glucose concentration measurement. After temperature 
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